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Summary. We consider various possibilities for the uncorrelated reference for 
the calculation of properties. According to the philosophy of L6wdin, to whom 
this volume is dedicated, the uncorrelated reference state for response properties 
ought to be taken as the unperturbed Har t r ee -Fock  state for properties of all 
orders in the applied field. Frequently, however, it is operationally convenient to 
use the coupled Har t r ee -Fock  like results as a standard of comparison for 
second- and higher-order properties, even though this is not consistent with 
L6wdin's choice for the uncorrelated reference state. In this method the reference 
state is the perturbed Har t r ee -Fock  state. Numerical examples demonstrate a 
rather large difference between the two uncorrelated references. We consider the 
pros and cons of each choice. 
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I. Introduction 

Perhaps the premier persistent problem confronting formal and computational 
quantum chemistry over the past two score years is that of electron correlation. 
The first thorough analysis of  the effect of correlation on a calculated property, 
energy, was provided by L6wdin in the series of papers [1-3] to which this 
volume is dedicated, and in an extension [4] to it. Here he introduced a strict and 
logical definition of the correlation energy. He was aided by the variation 
principle, which guarantees that more accurate wavefunctions lead to not higher 
total energies, the result of a better description of the correlation (the compli- 
cated motions electrons may undergo in their attempts to avoid one another ) .  
There is, however, no analog of the variation principle which is useful for 
properties other than total energy, although the flexibility of the wave function 
obviously retains its importance. It is for this reason that it would be desirable 
to develop a standard of comparison to help evaluate calculated molecular 
properties, much as L6wdin's standard has been useful in the evaluation of 
calculated energies. What that standard should be is, however, not obvious. 
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The correlation problem was first addressed in solid-state physics nearly sixty 
years ago when Wigner worried about " . . .  statistical connections of positions of 
different electrons. .  2' [5] in the context of an independent particle model (IPM) 
[5-8]. He was interested in " . . .  the statistical connection between electrons with 
antiparallel spin (0.1 = - 0 . 2 )  and between those with parallel spin (0-1 = 0.2)". 
Wigner referred to the energy lowering attendant on the use of wavefunctions 
which allowed such a connection as the "correlation energy", but did not offer 
an operational definition of it. 

Subsequently, the correlation problem was formulated in an elegant manner 
by L6wdin [3] in terms of the second-order density matrix. He proposed to use 
the Har t r ee -Fock  (HF) solution as the uncorrelated reference state, in which 
case the statistical connection among particles with parallel spin is adequately 
described as a consequence of the Pauli principle and the antisymmetry of  the 
HF wavefunction (the Fermi hole). The problem is thus reduced to a treatment 
of correlation in pairs of  electrons with antiparallel spin. 

The preceding discussion deals explicitly with energy. There are, however, 
many properties of atoms, molecules and solids other than total energy, which, 
for example, arise from the response of the system to an external (or internal) 
perturbation and which are both interesting and amenable to calculation. It is 
desirable to have a fixed point of reference for property calculations to serve the 
same function as the HF energy does for energies. Determination of  such a fixed 
point is more difficult for properties other than total energies, as we have neither 
a variational theorem nor a good estimate of  the exact, non-relativistic result to 
guide us. 

In this contribution we will, in the spirit of  LSwdin, consider the calculation 
of molecular properties, and the effect of inclusion of correlation on such 
calculations. It seems that the situation now regarding the calculation of molec- 
ular properties is in much the same state as energy calculations were when 
LSwdin wrote on correlation and energy in 1955 and is thus ripe for discussion. 

We will discuss the notion that it may be appropriate to use a definition for 
the uncorrelated limit for second- and higher-order properties that deviates from 
LSwdin's definition of the uncorrelated limit for zeroth-order properties in order 
to conform to the conventional way of  defining zeroth-order in property calcula- 
tions. Such a definition is based on the Finite Field method and differs in 
substance from the L6wdin definition on the point of whether the perturbing 
field should be included in the unperturbed Hamiltonian [9]. We will illustrate 
that the magnitude of the correlation contribution is very different for the two 
ways of defining zeroth-order for second- and higher-order properties. 

2. Correlation and properties 

2.1  L 6 w d i n '  s de f in i t ion  

L6wdin wrote (exact) solutions for the stationary states ~ x  of the Schr6dinger 
equation for a Hamiltonian, H: 

H~g[  x = E ~ [  x (1) 

in the form: 

g.,~x = ~ F  + 7,~.or~ (2) 
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where the 7J~ v are Slater determinantal solutions to the Har t ree-Fock equations 
for the same operator H, and 7J~ °rr represents the "correlation error" [4] in the 
wavefunctions. The associated correlation energy is then defined as: 

Ecorr = (H)a~ - E,F. (3) 

As stated by Lbwdin [4]: 

"The correlation energy for a certain state with respect to a specified Hamilto- 
nian is the difference between the exact eigenvalue of the Hamiltonian and its 
expectation value in the Hartree-Fock approximation for the state under 
consideration". 

As energy was, at that time, the quantity of primary interest to calculate, the 
Hartree-Fock approximation became, and remains, the standard of comparison 
in the discussions of correlation, and, de facto, in all of quantum chemistry. 

2.2 Properties 

Now let us turn to properties. Consider a system in an external field, F. The 
Hamiltonian may be written: 

H = Ho + V(F) (4) 

where H0 describes the unperturbed system and V(F) its interaction with the 
perturbing field. Then, following Kutzelnigg [10], one can conveniently divide up 
the interesting response propeties of the system [11] according to the order in 
which the perturbing field appears in their calculation [12]: 

1. Zeroth-order properties - properties which depend on the energy only. These 
are the static properties (frequently independent) obtainable from the potential 
energy surface for the system and have to do with structure and energies. 

2. First-order properties - static properties that can be obtained as expectation 
values of an appropriate operator between specific wavefunctions. Such quanti- 
ties as dipole moment, moments of the charge distribution and other one-elec- 
tron properties belong to this class. 

3. Second-order propert ies-  these static and dynamic (frequency dependent) 
properties correspond to second-order perturbation terms and include polariza- 
tilities, magnetizabilities, and moments of the oscillator strength distributions. 

4. Third-order properties - those properties that arise in third-order perturba- 
tion theory, and comprise, for example, the first hyperpolarizability [13], two 
photon transition moments [14] and transition moments between excited states 
[15]. 

Higher-order properties have also been characterized [16]. The question of 
correlation is of importance for all classes of properties, while the definition of 
L6wdin only applies explicitly to zeroth-order properties. It is our purpose to 
discuss the problem of correlation for higher-order properties as well. 

There are three approaches which have traditionally been employed in 
evaluating properties. In the finite field method, the wavefunction is evaluated in 
the presence of the perturbing influence, and moment expansions are obtained by 
numeric differentiation. Rayleigh-Schr6dinger perturbation theory expresses the 
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perturbed wavefunction in terms of unperturbed functions, then analytically 
equates properties order-by-order from a partitioned Hamiltonian. Finally, 
propagator techniques extract the desired property directly from the response of 
the system to the perturbation. The following sections will consider the correla- 
tion problem for each class in turn. 

2.3 The finite field approach 

The finite field method [16] is based on a power series expansion of the 
field-dependent total energy. For example using the Hamiltonian of Eq. (4) the 
normalized energy functional becomes: 

E(F)=(T(F)IH[~'(F)>=E°+ ~ F=oF+2\OFJF --o + ' ' "  (5) 

where the nth-order moment of the field then is: 

0 n 
OF n (}P(F)[H[ ~(F) >IF= o. (6) 

For perturbations such as the electric dipole interaction: 

V = - e F ' r  (7) 

the Hellmann-Feynman theorem holds for variationally determined wavefunc- 
tions, so that the first-order term in the expansion series, the dipole moment, 
may be simply evaluated from the unperturbed wavefunction: 

(7Ji(F) [H I ~,(r)}lv= 0 = ( 7Ji(F = 0) ] ' e r  I ~Uz(F = 0)}. (8) 

In the instance that the Hellmann-Feynman theorem is fulfilled, the correla- 
tion contribution to a first-order property could thus be evaluated as: 

A . . . .  = ( ~ x  [A i ~Tx> _ (~U[A[~'U>. (9) 

This scheme maintains a formal connection to the L6wdin definition of correla- 
tion energy. The important difference is, however, that the zeroth-order Hamilto- 
nian (H) differs according to property, and the wavefunction (approximate, 
exact or HF) is property dependent as well. 

It should be noted that the F ~ 0 limit of the Finite Field method gives the 
Coupled Hartree-Fock (CHF) scheme, which is equivalent to the static limit of 
the Random Phase Approximation (RPA) or to the Time Dependent Hartree- 
Fock (TDHF) scheme. The main advantage of this method is that it is opera- 
tionally easy to implement (although fraught with technical difficulties). One 
simply calculates the property at a variety of perturbing field strengths and 
differentiates the result numerically, typically by taking differences of lower 
moments. It has been used widely for static first-, second- and higher-order 
properties. Recently, there has been much progress made in avoiding numerical 
differentiation by differentiating the energy expression analytically and calculat- 
ing the resulting matrix elements directly [17, 18], thus avoiding numerical 
difficulties and reducing the computational effort and error. In either case, 
comparison of the result of a HF calculation to the exact one will indicate the 
importance of correlation in calculation of the property under consideration. 
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The finite field scheme also allows for an increase in its level of correlation, 
but not in as regular and systematic a way as does the propagator scheme (vide 
infra). Instead of increasing correlation via increasing the order of perturbation 
theory through which the problem is solved, one must first choose an ansatz for 
the correlated wavefunction: MCSCF, CI, MBPT or coupled cluster, for exam- 
ple. Increasing the level of correlation is then accomplished in a way appropriate 
to the ansatz wavefunction. It then becomes difficult to compare correlated 
calculations using different ansatz wavefunctions. In addition, the frequency 
dependence of second- and higher-order dynamic properties does not emerge 
naturally, and must be in some sense grafted on to the calculation [17]. 

In this definition of the uncorrelated reference, that is, if the perturbed HF 
solution is chosen as zeroth-order, as some authors are wont to do, RPA, is then 
zeroth-order. 

2.4 Rayleigh- SchrSdinger perturbation theory 

Rayleigh-Schr6dinger perturbation theory (RSPT) has pedagogical value from 
both the standpoint of examining the correlation problem and the analytic 
evaluation of static field properties. We will examine RSPT in both contexts. The 
formalism, which is discussed elsewhere [19], is based on expanding the Hamilto- 
nian, wavefunction, and energy in terms of an ordering parameter, 2: 

H =  Ho + ,W 

Ti = ~9~ °) ÷ 2~0! 1) + 2 2 ~  z) + " "  ( 1 0 )  

Ei -- E~ °) + ~E~ ~) + ~:E~ 2) + " "  

then collecting terms of the same order: 

E?) --  ( ~ ! ° ) [ H o l  ~?) } 
E! ') = (~k}°) [ Vl~h! °)} (11) 

El:) = (~k~°)] Vl~hil)}. 

The result of RSPT coalesces with the finite-field expression at first-order. The 
perturbed wavefunctions are expanded from complete sets of unperturbed wave- 
functions, leading to familiar sum-over-states expressions, e.g. for second-order 
properties: 

E!:) = E I vl  o)) 
. ~ i E!0) _ Z(f )  ( 1 2 )  

The correlation problem is studied in RSPT following the M611er-Plesset 
(MP) scheme [20]. The Fock operator is defined to be the zeroth-order Hamilto- 
nian, while the perturbation consists of the electron-electron interaction less the 
one-electron Fock potential, i.e. the fluctuation potential. When partitioned thus, 
the HF energy is correct through first-order in the electron interaction: 

Eft F = E~ °) + E} '). (13) 

Upon convergence of an external perturbation-free HF self-consistent field 
procedure, we arrive at the first order MP (MP1) energy which is consistent with 
L6wdin's uncorrelated reference state for energy. As in the previous section, it 
may then be advantageous to choose the field-dependent HF solution as the 
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uncorrelated reference state for properties. The two kinds of HF methods differ 
by the latter's induced electronic relaxations. These effects can and will be 
quantified in the course of our discussion. 

Turning now to RSPT properties, the word "correlation" has often been 
rather cavalierly used. We illustrate this by examining a second-order RSPT 
property, into which we introduce an hierarchy of unperturbed functions. A 
simplistic approach to second-order RSPT for normal one-electron perturbations 
is uncoupled HF  [21], which, for a property corresponding to operators P and Q, 
takes the form: 

(4', IP IqL }(4'a Ia Iq , } 
PQ : Z (14) 

a,p Ep - -  (~a 

where the sums p, q, r . . . .  and a, b, c . . . .  run over occupied and virtual orbitals, 
respectively; ~bp is the pth  HF orbital and Ep is its HF orbital energy. This will be 
the zeroth-order (in terms of correlation) expression. If the RSPT perturbed 
wavefunction is represented by a single-replacement determinant, the following 
result is obtained: 

(4),lel4)a}(4)olQl4)p} V (lS) PQ z" e - ea -- 2 (pp [ aa } + (pa [ pa } a,p p 

where (pp [aa}=~c~*(1)C~*p(2)(1/r~2)c~a(1)4)a(2)d(1)d(2). This has been re- 
ferred to as the single transition approximation (STA) [22]. In Sect. 3 we refer 
to this level of approximation as HF  for properties. 

The matrix elements here have been formulated over HF single-determinan- 
tal wavefunctions, and therefore satisfy the criteria of the "uncorrelated" refer- 
ence based on the language of LSwdin. However, there are several problems 
with this definition. Foremost, the expression in this form is not rotationally 
invariant, which is unacceptable on physical grounds. The reason for this is 
that there is no coupling between the excited states represented by one single- 
replacement determinant. However, a linear combination of such single-replace- 
ment functions restores this property, with the expansion coefficients 
variationally chosen through the monoexcited configuration interaction (MECI) 
procedure. 

In practice, the CI matrix diagonalization and subsequent transformation 
steps are not necessary provided that the inverse of the MECI matrix is 
computed. Preferably, the expression is solved using reduced linear equation 
methods [23], so that large matrices may be dealt with efficiently. The second- 
order property then has a general matrix form: 

E (2) = P t A  - 1Q (16) 

where the energy representation is now a full matrix which reflects the coupling 
between states: 

Apa,q O = (Ep --Ea)(~pqSab - - 2 ( p q  lab}  + (pa [ qb ). (17) 

The MECI property calculation appears to exceed the limit of the LSwdin 
definition. In fact, this procedure is often referred to as a "correlated calcula- 
tion", because of the inclusion of a CI energy representation. However, based on 
the analysis in the previous and following sections, this conjecture proves to be 
false. 



On the uncorrelated reference for calculation of properties 173 

2.5 The response function approach 

Response functions are polarization propagators [24] which express order-by- 
order the density disturbance of a system subjected to an external perturbation 
[25]. The induced linear response hence determines properties at second-order. In 
the spectral representation, the linear response function is written: 

 <oiP IQ_Lo> _ <o!_Q L ><n LP Do>.  
( (  33 { co-En-]-Eo co+E, , -Eo  J 

(18) 

where P and Q again refer to two external/internal perturbations appropriate to 
the property (e.g. P = Q = -eY for dynamic dipole polarizations), and co is the 
frequency of perturbing influence Q. The details of the derivation are discussed 
elsewhere [26]. Of course, the results of response theory are identical to those 
obtained from time-dependent perturbation theory [ 19]. In addition to the linear 
response, the quadratic [27, 28] and higher [28] response functions have been 
characterized, and are now being examined [13, 29, 30]. 

Equation (18) is an exact expression generated by inserting complete sets of 
states into the time-domain propagator, followed by its Fourier transform 
[26, 31]. Computationally tractable forms are obtained from the moment expan- 
sion of the propagator equation of motion [32, 33], which leads to: 

( (P ;  Q))co = (B*I T*)(T* I coi-/ 1 T*)-'(T* [A). (19) 

Equation (19) defines the superoperator binary product [33] for number-conserv- 
ing operators as a commutator over the reference function: 

(Bt I T t) ~ <01[n , T t] 10> (20) 

and T t represents the complete manifold of excitations. 
Approximations to Eq. (19)result from the choice of reference function 0) 

and restrictions to the excitation space [25]. For instance, if IHF) is used as 0) 
and T is truncated to particle-hole excitations and de-excitations, the Random 
Phase Approximation (RPA) to the propagator is obtained [26, 31]. Through a 
series of transformations to the RPA eigenvalue problem [34], Eq. (19) may be 
cast in the form of the spectral representation (Eq. (18)). This canonical 
formulation is advantageous, as dynamic properties are readily obtainable for a 
wide range of frequencies, with different properties quickly computed by inser- 
tion of the appropriate transition moments. However, the sum must be over the 
complete set of excitations for properties calculated in this way to be correct, as 
we have shown, for example, for the Thomas-Reiche-Kuhn sum rule and mean 
excitation energy (cf. Eq. (23)) of atoms [35] and molecules [36]. 

Instead of solving the complete eigenvalue problem, the polarization propa- 
gators are obtained using direct methods. For instance, the RPA propagator for 
static field properties (eigenvalue to CPHF) can be written in the form [26]: 

<<P; Q>>o~=0 = Vte(A - B )  1VQ. (21) 

In Eq. (21), the matrix A retains the form of Eq. (17), but we see the energy 
representations being augmented by elements of the B matrix: 

Bpa,q b = (pb I qa > -- 2(pa [ qb >. (22) 

To avoid matrix diagonalization, reduced linear equations methods may be used 
to solve C = (A - B) - 1 Vo" From a power series expansion of this expression, it 
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has been shown [23] that this solution is equivalent order-by-order to iteration 
for the coefficients of coupled-perturbed HF (CPHF) [37]. 

Based on the arguments in the preceding section, it would seem, then, that 
RPA represents a compelling case as the uncorrelated reference of property 
calculations. However, one can pose arguments to the contrary. It was shown 
some time ago [38] that RPA is the consistent first order polarization propagator 
approximation, the perturbation being the fluctuation potential. Another major 
point of contention arises in consideration of vertical transition energies. These 
values may be calculated as poles of the propagator (but have no equivalent in 
the CPHF formulation). When viewed in the language of configuration interac- 
tion [39], the RPA representation of this property (of the energy) includes 
contribution from single configurations and limited number of doubly-excita- 
tions. Also, an inconsistency develops when the RPA/CPHF comparison is taken 
beyond the single-determinantal reference. For instance, the Second Order 
Polarization Propagator (SOPPA) is developed using a M~ller-Plesset second- 
order reference function [25]. However, the results obtained using SOPPA differ 
from those computed from MP2 using field-perturbed HF orbitals. 

3. Discussion and numerical examples 

In this section numerical examples are used to illustrate some of the key 
problems encountered in property calculations regardless of which method is 
used to define the uncorrelated reference. We address: 

- the question of lack of a variational principle for properties other than energy 

- the question of convergence of the perturbation expansion 

- the basis set problem, and in particular the different requirements on the basis 
set for different properties. 

No matter what method is used to define the correlation contribution to 
properties, a key problem encountered is to determine whether or not the 
computation is converging, and if so if it is to the correct answer. This requires 
an estimation of the reliability of a property calculated with an approximate 
wavefunction containing some degree of correlation. In the case of the zeroth- 
order property, energy, the matter is straightforward. One has the variation 
principle to guarantee monotonic approach to Eexact from EHv as increasing 
correlation is included in the treatment. In addition, the energy of the Hartree- 
Fock limit (or a very good approximation to it) is normally available to help 
with evaluation of basis sets, and a good approximation to Eexac t is obtainable 
from experiments for exact comparison to the absolute value of the result. 

Neither of these guides is generally available for higher-order properties. As 
an example, we present in Table 1 a series of Many-Body Perturbation Theory 
(MBPT) calculations of a first-order property, the dipole moment (#) of CO [40]. 
Although the correlation level increases down the table, the value of # does not 
vary monotonically with increasing correlation. It is clear that agreement with 
experiment is a necessary but not sufficient condition for belief that the problem 
has converged with respect to correlation. In addition, the result must be stable 
to an increase of the level of correlation. Although these authors get results in 
good agreement with experiment using a larger basis than that reported here 
[lOs9p4d2flg] and a higher level of correlation (Coupled-Cluster SD(T)), they 
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Table I. Dipole moment of CO a at different 
levels of correlation using a [lOs9p4d2f] basis 

Table 2. Mean excitation energies of He and 
Be at different levels of correlation 

Method #(D) 

SCF - 0.266 
MBPT-2 0.282 
MBPT-3 O.O47 
MBPT-4(D) 0.110 
MBPT-4(DQ) 0.071 
MBPT-4-(SDQ) 0.118 
MBPT-4(SDTQ) 0.235 

expt 0.122 b 

Method He a I 0 (eV) 
Be b 

SCF 46.69 32.54 
MECI 43.88 36.33 
RPA 42.69 42.30 
SOPPA 42.41 43.63 

a [9s9p5d] basis; Ref. 42 
b [13sllp4d] basis; Ref. 35 

aF rom Ref. 40; R~ =2.1316a.u 
b Ref. 41 

comment that the result is neither shown to be converged in basis set nor in the 
inclusion of correlation. 

The effect and importance of added correlation is difficult to generalize 
among properties and systems. However, we will give a few illustrative examples 
and attempt to draw some general conclusions therefrom. In Table 2, we present 
the He and Be mean excitation energy I0 (derived from the zeroth energy 
weighted moment of the dipole oscillator strength distribution) calculated using 
the polarization propagator [35, 42]: 

t 

l n l  0= ~ fo, l n E o , /  Z fo. (23) 
n # 0  / n,¢0 

where the {fo, } are the dipole oscillator strengths corresponding to the excita- 
tions ] 0 ) ~  In) with energy E0,, at various levels of correlation. Although the 
property varies monotonically with correlation in both cases, the trends are 
opposite. What is clear in both cases, however, is that inclusion of some 
correlation is very important (SCF--* RPA) while refining the details of correla- 
tion (RPA ~ SOPPA) is not so important. Similar results are obtained for NMR 
shielding in a variety of systems [9, 43, 44]. The situation is also similar for the 
first excitation energy and paramagnetic susceptibility of BH [45] as seen in 
Table 3 and for the first excitation energy in N 2 ,  presented in Table 4. In stark 

Table 3. Paramagnetic magnetizability and lowest excitation en- 
ergy of BH as a function of level of correlation a 

Method ~P (a.u.) b AE(XIZ + ~ A 1H) (eV) c 

HF 3.34 4.02 
MECI 5.70 2.86 
RPA 7.64 2.66 
SOPPA 8.05 2.42 
CCPPA 6.91 2.90 d,e 

a Ref. 45, basis [9s7p5d2f/7s4p] 
b 1 a.u. for ~, e2aZme I ~-- 7.89104 x 10 29jT-2 
c At R e = 2.336 a.u 
d Ref. 46, basis [gs6p4d/6s3p] 

Experiment [47] 2.87 eV 
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Table 4. Lowest excitation energy of  N 2 as a 
function o f  level of  correlation 

Method E ( X I  S, + -..+ w 1Au) (eV) 

HF a 12.07 
MECP 9.23 
RPA ~ 8.95 
SOPPA b 10.54 

expff 10.3 

a Basis 12 of  ref. 48; Re = 2.068 a.u 
b Table 2 of ref. 31 

Ref. 47 

contrast to these well behaved monotonic cases is the previously mentioned 
calculation of the dipole moment of CO [40] which responds strongly and 
erratically to increasing levels of  correlation. 

Similar properties in the same system often do not exhibit the same trend as 
a function of the amount of  correlation included in the calculation. In Table 5, 
we present several moments of Quadrupole Oscillator Strength Distribution 
(QOSD) of N2 [48]. These moments are second-order properties defined by: 

(k (0IM~ In ) (n  I Mr610) (24) S~,~6 =2 2 E~ 2 '  
nv~O 

where the {M~ } are the Cartesian quadrupole moment operators. It is evident 
that the effect of correlation is different in different Cartesian directions, and 
depends on the order of the moment as well. Note that the equivalence of  S( - 1) 
in HF and RPA should not be taken as evidence that correlation is not 
important in this case. It is rather, simply, a consequence of  the lack of energy 
dependence of  the property (see Eq. (24)). 

Another problem which merits attention is that of basis set. Although no 
computational basis set is complete, one would like to have a computational 
basis set which is as complete and balanced as possible. The variation principle 
assures that adding functions to a basis set will not increase the energy, but gives 
no help in deciding whether adding tight functions which lower the energy 

Table 5. Effect of  correlation on the calculation of  some moments of  
the quadrupole oscillator strength distribution a in N2 b 

HF MECI RPA 

Sx2,x2(0) 34,4 34.3 29.2 
Szz,z2(O) 109,1 105.6 91.7 
Sz2,~2( - 1) 77,7 77.7 68.8 
Sz2,z2( - 2) 37,0 38.2 35.1 
S~2,zz(-4) 114.1 140.0 133.0 
S~2,~2( - 6) 226.3 306.6 297.6 

a In Hartree atomic units 
b Ref. 48; R e = 2.068 a.u.; Basis [12s7p2d]  plus 3 diffuse f-functions 
at the bond center 
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Table 6. Effect a of  basis set and correlation on the Sx2,y2(0) moment  of  the quadrupole oscillator 
strength distribution b of N2 

Basis - Escv Sx2 y2(O) S L S v 

A [ 12s7p3d] 108.98940 7.20 13.98 13.76 
B [ 12s7p2d] c 108.98824 7.47 14.11 13.59 
C [ 12s7p2d] a 108.95024 7.23 13.39 12.53 
D [12s7p2d/3f] e 108.97120 1.86 13.61 12.87 

Ref  48; all quantities in Hartree atomic units; R 3 = 2.068 a.u 
b Calculated at RPA level 
c Basis A with the most  diffuse d-function removed 
a Basis A with the tightest d-function removed 
e Basis C with the three diffuse f - funct ion added at bond center 

somewhat or very diffuse function which leave the energy unaffected are better 
for calculation of a specific property, or whether a basis set acceptable at one 
level of correaltion is good at others as well. In Table 6, we present the Sx2,y2(O) 
moments of the QOSD for N2 at the RPA level [48] for various basis sets. This 
quantity should be zero in the limit of the exact wavefunction, so the correct 
answer is known. Although basis A gives the best energy, it gives a very poor 
value of Sx2y2(O). This is because the property samples a part of  space different 
than that which is important for the  energy. 

Other criteria of basis set balance and completeness are, however, available. 
For  example, the T h o m a x - R e i c h e - K u h n  sum rule is exact in both its length and 
velocity forms in RPA in the limit of  a complete basis [49]: 

,~0  (25) 

E fvn = S~ = N. 
nv~0 

Here N is the number of electrons in the system. Satisfaction of  the length-veloc- 
ity equality provides a check on the balance of the basis with regard to tight vs. 
valence functions, while comparison of the oscillator strength sums with N is an 
indicator of basis set completeness. In Table 6 the calculated values of So L and So v 
are given for N2 at the RPA level of correlation for several basis sets. Clearly 
basis A is the best from both the point of  view of  completeness and balance. 
Removal of the tightest d-function (basis C) does considerably more damage to 
the sum rule and on EscF than does removal of  the most diffuse d-function (basis 
B). However, the effect on Sx2,y2(0) is the opposite. Comparing to our comments 
concerning Sx2,y2(O), for which basis D is the best, it is clear that different 
properties require qualitatively different basis sets for proper evaluation. 

4. Conclusion 

A logical definition of  the uncorrelated limit for all order properties, consistent 
with L6wdin's original definition of correlation energy, is obtained if the same 
zeroth-order Hamiltonian is used at all orders. To do this consistently implies 
that the unperturbed HF state (that is, with no field included) should be used as 
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the uncor re la ted  reference. In  this case H F / S T A  is zero th  o rde r  and  R P A / C P H P  
is first o rder  and  hence corre la ted.  

However ,  such a choice could  be p rob lemat i ca l  for  second- and h igher -o rder  
proper t ies .  One notes  tha t  a second-order  p r o p e r t y  <<A; B))o~ is the l inear  
response o f  the t ime-dependen t  quan t i ty  <0(t)IA 10(t)), caused by  the pe r tu rba -  
t ion o p e r a t o r  B(t) [28]. I f  one then chooses  10(t)) to be the t ime-dependen t  H F  
state (i.e. I H F ) =  [ 0 ( -  oc) ) ) ,  then one ob ta ins  the R P A / C P H F  a p p r o x i m a t i o n  
for the l inear  response funct ion  and  one might  thus argue tha t  R P A  is the 
ze ro th -o rde r  app rox ima t ion .  Inheren t  in this line o f  a rgumen ta t ion  is aga in  the 
a s sumpt ion  tha t  the ze ro th -order  H a m i l t o n i a n  ( in terms o f  pe r t u rba t i on  theory  
and not  o rder  o f  the external  pe r tu rba t ion )  is Ho + V(F). 

Thus,  the same result  is recovered as f rom the finite field approach .  As  the 
finite field a p p r o a c h  and  its extensions enjoy growing popu l a r i t y  for  ca lcula t ion  
o f  stat ic proper t ies  [50], we concede tha t  for  second- and  h igher -order  proper t ies ,  
R P A / C H F  is a useful and  readi ly  accessible s t anda rd  for  compar i son ,  a lbei t  no t  
the mos t  logical  choice for  the uncor re la ted  reference for  p roper t ies  and  no t  in 
accordance  with  L6wdin ' s  defini t ion for  zero th  o rde r  proper t ies .  The ques t ion  
then becomes  not  one o f  inclusion o f  cor re la t ion  per se, but  o f  inclusion o f  
p o s t - R P A  corre la t ion .  
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